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Abstract

Objectives To use methods from the literature to predict rat tissue:plasma partition
coefficients (Kps) and volume of distribution values. Determine which model pro-
vides the most accurate predictions to increase confidence in the use of predicted
pharmacokinetic parameters in physiologically based pharmacokinetic modelling.
Methods Six models were used to predict Kps and four to predict Vss for a dataset
of 81 compounds in 11 rat tissues, and the predictions were compared with experi-
mentally derived values.
Key findings Kp predictions made by the Rodgers et al. model were the most accu-
rate, with 77% within threefold of experimental values. The Poulin & Theil model
was the most accurate for the prediction of Vss, with 87% of predictions within
threefold.
Conclusions This study has shown that in-silico models available in the literature
can be used to accurately predict Kp and Vss in rat. The Rodgers et al. model has been
shown to provide the most accurate Kp predictions, with consistent accuracy across
all drug classes and tissues. It was also the most accurate Vss predictor when no
in-vivo data were used as input. However, transporter systems and other mecha-
nisms that are not yet fully understood need to be incorporated into these types of
models in the future to further increase their applicability.

Introduction

Prediction of the likely pharmacokinetic and distribution
properties of a compound in humans is an important step
in the drug development process, as compounds that are
unlikely to exhibit the required properties can be discounted
at an early stage, thus reducing the costs associated with devel-
opment of a new compound. With that in mind, physiolo-
gically based pharmacokinetic (PBPK) modelling aims to
accelerate and reduce the cost of the drug discovery and
development process,[1] by reducing the number of in-vivo
and in-vitro experiments required.

These PBPK models aim to accurately represent the pro-
cesses of absorption, distribution, metabolism and excretion
(ADME) using a series of differential equations to mimic the
physiological conditions experienced within the body by
that drug.[2] These models take into account physiological
and biochemical parameters to create a multi-compartment
model, with each compartment representing one or more
organs of the body. Tissue:plasma partition coefficient (Kp)
values are essential for the development of a PBPK model, as
they help to describe the distribution of a drug within the

body by defining the ratio of compound concentration
between plasma and tissue at equilibrium,[3] and as such they
can also be used to predict the volume of distribution at
steady state (Vss).[4] Although in-vivo measures of tissue con-
centration can provide accurate estimates of tissue:plasma
partition coefficients, performing these experiments requires
the use of significant numbers of animals and resources in
processing and analysing the samples. Both are prohibitive
to routine data collection in drug discovery where large
numbers of compounds need to be tested. Therefore, the
development of a method for predicting partition coefficients
from in-vitro and in-silico data has become important for the
future of PBPK modelling. These methods mean that Kps can
be predicted from more easily accessible parameters, which
may already be available in the literature or can be easily
obtained experimentally.

Early Kp prediction methods in the literature calculated
Kps by using the octanol:water partition coefficient of the
drug of interest to describe distribution, but Poulin and
Krishnan[5] discovered that partitioning in vegetable oil was
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a better way to represent the solubility of an organic drug
in the neutral lipids present in adipose tissue. Other studies
have used quantitative structure–property relationships
as a basis for their predictions.[6,7] More recently, the work
of Poulin and Krishnan has been expanded to take into
account the lipid, phospholipid and water content of tissues,
and the solubility of a compound in these three phases,
to develop a mechanistic algorithm for the prediction of
Kp values.[8] Models designed to improve upon this work
were also developed, such as the Rodgers et al. model[9] that
aimed to improve the prediction of moderate-to-strong
bases, and the Berezhkovskiy model.[10] Other recent models
have taken a more empirical approach, and based their
predictions on in-vivo data, such as volume of distribu-
tion,[11] or have used measured in-vivo partition coefficients
in one tissue (e.g. muscle) as a predictor for the Kp values of
all other tissues.[12]

Previous studies have compared the ability of numerous
Kp prediction methods to predict rat and human Vss.[13,14] The
Jones et al. study undertook a comprehensive analysis of the
ability of 24 methods to predict Vss in human, using a dataset
of 18 blinded compounds.[13] However, no comprehensive
analysis using a dataset of this size and composed of literature
compounds has previously been attempted. Additionally,
no previous study has validated the results at the Kp level
as well as determining the accuracy of the Vss predictions
in rat.

Therefore, the objective of this study was to use six estab-
lished methods available in the literature to produce Kp pre-
dictions for a dataset of 81 drug compounds in 11 rat tissues,
and to compare these predictions to experimental values in
order to analyse their accuracy. Models selected for this study
varied in complexity and the amount of experimental data
required (details in Materials and Methods). Drug selection
in the current analysis was based on availability of input
parameters across all methods investigated and the availabil-
ity of corresponding experimental Kp data and comprises
acidic, basic, neutral and zwitterionic drugs. Kp predictions
made by four of the models were then used to predict Vss

values for the same dataset of compounds, and the accuracy
of these results analysed by comparison to in-vivo Vss values.

Materials and Methods

The six methods of prediction compared in this study were
taken from the literature (Arundel,[11] Berezhkovskiy,[10]

Jansson et al.,[12] Poulin et al.,[8,15] Poulin & Theil[16] and
Rodgers et al.[9,17]). Three of these models can be categorised
as being mechanistic or in silico, requiring only tissue compo-
sition data and physicochemical drug properties as input (i.e.
Poulin et al., Berezhkovskiy, and Rodgers et al.). The remain-
ing three models take an empirical or in-vivo approach,
requiring experimentally derived data along with the physi-

cochemical properties of the compound (i.e. Arundel,
Jansson et al., and Poulin & Theil).

In some cases, more than one equation has been developed
by the author(s) to deal with different tissue types and drug
classes. The model by Rodgers et al. comprises one equation
for the prediction of Kp for moderate-to-strong bases and
another for all other drug classes,[9,17] whereas the Poulin et al.
model uses one equation for all tissues except adipose, for
which a second equation was generated.[8,15] For the purpose
of this study, these equations were grouped together under
one heading (e.g.‘Rodgers et al. method’ refers generally to all
equations by this author).

The Rodgers et al. model and the Poulin & Theil model
predict values for tissue:plasma water partition coefficients
(i.e. Kpu rather than Kp). Therefore, the values predicted by
these two methods were expressed as Kp by using the rela-
tionship shown in Equation 1 using fup (fraction unbound in
plasma) values taken from the literature (Table S1).

Kp Kpu fup= * (1)

In-vivo models

Arundel model

The Arundel model[11] is classed as an in-vivo model because
it requires in-vivo Vss as an input parameter. This multi-
compartmental model approach was based upon the prin-
ciple that organs and tissues can be ‘lumped’ together as long
as they occupy parallel positions in the system structure and
have similar time constants.[18] Therefore this model deals
with six lumped compartments: (1) lung, (2) brain, heart and
kidney, (3) gut and spleen, (4) liver, (5) muscle and (6)
adipose. The parameter known as the tissue rate constant
(Kti), or rate of disappearance from the tissue of a drug i, is
used to characterise these compartments.

Arundel found that the product of (Kt ¥ Vss)j for the
lumped compartments remained fairly constant for all tissues
(except adipose), and therefore based on the steady-state
volume of distribution of a compound (Vss) its Kti values can
be calculated using Equation 2:

Kt
Kt V

V
i

ss j

ss i

=
×( )

( ) (2)

Using this equation and the relationship shown in Equa-
tion 3 (where Per represents the perfusion rate of the tissue,
normalised for tissue size), partition coefficients for each
lumped compartment can be calculated by integration of the
Kti values obtained.

Kp
Per

Kt
i

i

= (3)
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The Kp value for each lumped compartment is in effect an
‘average’ Kp of all the tissues it represents, but the model can
be expanded to calculate the individual Kp values as shown in
Equation 4, with Qt representing the blood flow rate of the
tissue, and Vti representing the volume of the tissue.

Kt
Qt

Vt Kp
i

i

i

=
×

(4)

For adipose tissue, a different method was required,
whereby Arundel proposed that the partition coefficient
could be estimated using logD7.4 as an input parameter to
Equation 5:

log . . * log .Kp D= − +0 6 0 8 7 4 (5)

Jansson et al. model

The Jansson et al. model[12] is an empirical prediction method
based on a combination of a measured volume of distribu-
tion, and a lipophilicity descriptor of the compound. Further-
more, linear regression analysis is used to predict Kp values
for all other tissues from the in-vivo Kp value in muscle. This
method of linear regression was first described by Björk-
man[4] and is detailed in Equation 6:

K Ktissue tissue muscle tissuep slope p intercept= × + (6)

Jansson et al. incorporated this regression into their model
while also using a lipophilicity descriptor (logXdrug) for
certain tissues where it was deemed necessary. The logXdrug

parameter can be either logP, logD7.4 (logP adjusted for ioni-
sation at pH 7.4), or logK7.4 (vegetable oil:water partitioning
adjusted for ionization at pH 7.4). The selection of descriptor
to use is based upon the use of an F-test, and the descriptor
with the lowest sum of squared residuals is chosen. Using this
and values for Kpmuscle taken from the literature, two equations
were developed (Equations 7 and 8) for the prediction of par-
tition coefficients (where btissue is the slope for logXdrug):

Kptissue
slope Kptissue muscle tissue= × +10 log intercept (7)

Kptissue
slope Kp b Xtissue muscle tissue drug= × + × +10 log log interceepttissue (8)

Poulin & Theil model

The Poulin & Theil model[16] is similar to the Jansson et al.
model described above in that it uses linear regression to
define the relationship between the in-vivo muscle Kpu value
and the Kpu of all other tissues. Equation 9 describes the rela-
tionship, where m is the slope and log(b) the intercept:

log log logKpu m Kpu bmuscle( ) = ( ) + ( ) (9)

For adipose tissue, Poulin & Theil suggested a different
approach, using an adjusted skin Kpu value to predict adipose
Kpu.

In-silico models

Poulin et al. model

The main aim of the equations derived by Poulin et al.[8,15]

was to incorporate two factors into the prediction of tissue-
:plasma partition coefficients – the solubility of a drug in
lipids, and the binding of a drug to macromolecules. In
total, Poulin et al. devised three equations to predict Kp
values for all drug types. The first equation does not apply
to drugs that reside predominantly in the interstitial space
of tissues, and instead applies only to those drugs that
assume a homogeneous distribution (Equation 10), where
Kvo:w is the distribution in vegetable oil:water, Vn is the
neutral lipid content, Vph is the phospholipid content and
Vw is the water content.

Kp
K V V V V

K V V
vo w nt pht wt pht

vo w np php

=
+( )[ ]× +( )[ ]
+( )[

:

:

. .

.

0 3 0 7

0 3 ]]× +( )[ ] ⋅
V V

fu

fuwp php

p

t0 7.
(10)

A further equation devised by Poulin et al. only applies to
those drugs that reside predominantly in the interstitial space
(Equation 11), where Ft represents the fractional content of
interstitial space in tissue and Fp represents the fractional
content of interstitial space in plasma.

Kp F F fu fut p p t= ( )⋅( ) (11)

This equation is derived from the observation that experi-
mentally obtained Kp values for these types of drugs are
approximately equal to the ratio between the interstitial
volumes of tissues and plasma.

A third equation was generated to predict Kp values for
adipose tissue (Equation 12).

Kp
K V V V V

K V V
vo w nt pht wt pht

vo w np php

=
+( )[ ]× +( )[ ]
+(

*

*
:

:

. .

.

0 3 0 7

0 3 ))[ ]× +( )[ ] ⋅
V V

fu

wp php

p

0 7 1.
(12)

This equation differed from that designed for non-adipose
tissues in that fut is now set to 1 in order to remove the effect of
macromolecular binding, and Kvo:w is replaced with K*vo:w

(where Kvo:w is equivalent to the distribution of non-ionised
species in oily and aqueous phases and K*vo:w is equivalent to
the distribution between non-ionised species and ionised and
non-ionised species in oily and aqueous phases, respectively).
These changes were made to reflect the markedly different
behaviour exhibited by compounds in adipose tissue when
compared with other tissues, in which the effect of macromo-
lecular binding was found to be negligible.
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Berezhkovskiy model

Berezhkovskiy described how the Poulin et al. model relies on
the following relationship (Equation 13):

V V

V V
wt pht

wp php

+( )
+( ) =

0 7

0 7
1

.

.
(13)

The Berezhkovskiy model[10] therefore represents a modified
version of the Poulin et al. model, which does not require the
assumption embodied in Equation 13 (Equation 14):

Kp

K V V V
V

fu

K V V

vo w nt pht pht
wt

t

vo w np php

=
+( ) + +⎡

⎣⎢
⎤
⎦⎥

+

:

:

. .

.

0 3 0 7

0 3(( ) + +⎡
⎣⎢

⎤
⎦⎥

0 7. V
V

fu
php

wp

p

(14)

Therefore, tissue binding is being considered only in the
water fraction.

Rodgers et al. model

Two models were devised by Rodgers et al. – one to predict
tissue:unbound plasma water partition coefficients (Kpu) for
moderate-to-strong bases,[9] and another to predict Kpu for
acids, very weak bases, neutrals and Group 2 zwitterions (i.e.
those that do not have a pKa � 7).[17]

Equation 15 (where EW represents extracellular water,
IW represents intracellular water, NL is neutral lipid, NP
is neutral phospholipids, AP- is acidic phospholipid, Ka is
the association constant of basic compounds with AP, p is
plasma, and P is the octanol:water partition coefficient for
all tissues except adipose, for which P represents the veg-
etable oil:water partition coefficient) accommodates the
electrostatic interactions that form between basic drugs
and acidic tissue phospholipids. This equation incor-
porates the partitioning of drug into neutral lipids and
phospholipids, and also the dissolution of the drug into
tissue water.

Kpu f f

Ka AP

EW

pKa pH

pKa pH IW

T
p

IW

p
= + +

+
⋅⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

+
⋅[ ] ⋅

−

−

−

1 10

1 10

10 KKa pH

pKa pH

NL NP

pKa

IW

p

P f P f

−

−

−

+
⎛
⎝⎜

⎞
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+ ⋅ + +( )⋅( )( )
+

1 10

0 3 0 7

1 10

. .
ppH p

⎛
⎝

⎞
⎠

⎤
⎦⎥

(15)

The second equation (Equation 16, where PR represents
protein) also incorporates partitioning into neutral lipids and
phospholipids, and the dissolution of a drug into the tissue
water. Furthermore, it incorporates associations with extra-
cellular proteins.

Kpu
X f

Y
f

P f P f

Y

fu

P f

IW
EW

NL NP

NL P

= ⋅ + + ⋅ + +( )⋅⎛
⎝
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⎣
⎢

⎤
⎦
⎥
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(16)

Vss calculation

Vss (volume of distribution at steady state) values were pre-
dicted using predicted Kp values from four of the models –
those authored by Berezhkovskiy, Poulin et al., Rodgers et al.
and Poulin & Theil. The Arundel and Jansson et al. models
could not be used to predict Vss, as they use in-vivo Vss as an
input parameter.

Vss was calculated using Equation 17:

V Kp V Vt pss = ( ) +∑ * (17)

where Vt represents tissue volume and Vp is plasma volume.
For comparison purposes, this equation was also used to

predict Vss from experimentally derived Kp values.

Dataset selection

Kp values were predicted for 81 drugs – 21 acids, 47 bases, 5
neutrals and 9 zwitterions. The logP values of this dataset
ranged from -4.51 to 6.3 (for pyridostigmine and trans-
retinoic acid, respectively) and pKa values ranged from -1.6
to 10.4 (for pyridostigmine and caffeine, respectively). These
drugs were chosen specifically to ensure that experimentally
derived Kp data were available for at least three tissues for
each of the compounds in the dataset (73 of the compounds
had Kps for five or more tissues available). Data were gathered
from Jansson et al.,[12] Rodgers et al.,[9,17] and Poulin et al.,[15]

and all experimental Kp values quoted were selected by these
authors as they were found to plausibly represent steady-state
distribution or pseudo equilibrium. In-vivo Vss values for all
drugs in the dataset were collated from the literature. All Kp
and Vss values were determined in rat.

Compound specific input parameters

The compound specific input parameters for this dataset
were taken from the literature and are summarised in
Table S1. The only exception to this is the vegetable oil : water
partition coefficient, logPvo:w, which was calculated using the
following relationship (Equation 18):[19]

logP logPvo:w o:w= ∗ −1 115 1 35. . (18)

Tissue specific input parameters

Kp values were predicted for adipose, bone, brain, gut, heart,
kidney, liver, lung, muscle, skin and spleen tissue, with the
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exception of the Poulin & Theil (2009) model which does not
predict muscle Kp, as it uses the experimentally-derived
in-vivo muscle Kp as an input parameter. These 11 tissues
were then also used to predict Vss values. The tissue specific
input parameters and tissue volumes for rat were taken from
the literature, and are summarized in Table S2.

Statistics

Accuracy of the Kp and Vss predictions was assessed by deter-
mining the percentage of predictions which fell within
< threefold, three to fivefold, and > fivefold of observed
values. The following statistical analyses were also performed:

Accuracy was assessed using afe (average fold error; Equa-
tion 19) and aafe (absolute average fold error; Equation 20),
where afe is used to assess to what extent a method over-
predicts or under-predicts the experimentally determined
values, and aafe gives the absolute value of the error.

afe = ∑ ( )⎛
⎝⎜

⎞
⎠⎟10

1

n
PRED OBSi ilog (19)

aafe = ∑ ( )⎛
⎝⎜

⎞
⎠⎟10

1

n
PRED i OBS ilog , , (20)

where PREDi and OBSi refer to the predicted and observed Kp
value for the ith compound respectively.

Precision was assessed using rmse (root mean squared
error; Equation 21):

rmse = −( )⎛
⎝⎜

⎞
⎠⎟∑1 2

n
PRED OBSi i (21)

The correlation concordance coefficient (ccc) was also cal-
culated as follows (Equation 22):

ccc
s

s s x y
xy

x y

=
+ + −( )

2
2 2 2 (22)

s and s2 are the covariance and the variance, as defined below
(Equations 23 and24):

s
n

x x y yxy i i= −( ) −( )∑1
(23)

s
n

x x s
n

y yx i

i

n

y i

i

n
2 2

1

2 2

1

1 1= −( ) = −( )
= =
∑ ∑, (24)

where xi is the predicted Kp value of the ith compound, yi is
the observed value, x is the average of the predicted values,
and y the average of the observed values.

Statistically significant differences between pairs of models
were assessed using a chi square test (Equation 25) to

compare the number of predictions that fall within, and
outside of, threefold of experimental values (level of signifi-
cance set at P < 0.05).

χ2
2 2

= −( ) + −( )a c

c

b d

d
(25)

where a and b refer to the number of predictions made
by model 1 which are within and outside of threefold of
experimental values respectively, and c and d refer to the same
values for model 2.

Results

Kp predictions

Predicted Kp values for each of the 81 drugs and 11 tissues
using all the methods investigated are summarised in
Table S3. The model with the highest percentage of Kp
predictions within threefold of experimental values was
the Rodgers et al. with 77.3% (89.4% within fivefold).
This model had significantly more predictions within the
threefold range than any of the other models (P < 0.01). The
rank order of remaining methods was Poulin & Theil >
Jansson et al. > Arundel > Poulin et al. > Berezhkovskiy
(Figure 1). In the case of the latter two models, < 51% of
the predictions were within threefold of the experimental
values (Table 1). The Poulin & Theil, Jansson et al. and
Arundel models all resulted in comparable overall Kp pre-
diction success (68–71% within threefold). There was no
significant difference between the number of predictions
within the threefold range for the Arundel and Jansson et al.
models (P = 0.96). For the current dataset only the Poulin
et al. and Berezhkovskiy models had > 30% of Kp predic-
tions outside of the fivefold margin.

The afe of the Berezhkovskiy, Poulin et al. and Poulin &
Theil models is < 1, indicating that all of these models exhibit
a general tendency to under-predict the Kp values across all
drug classes and tissue types.

Assessment of prediction accuracy by drug class

For acidic compounds, the Jansson et al. model showed the
highest accuracy of Kp prediction (90.2% of predictions
within threefold of experimental values, afe of 1.26). The
Rodgers et al., Arundel, Poulin et al. and Berezhkovskiy
models all performed well for this drug class with more than
70% of predictions within threefold of experimental values
(Table 2). The number of predictions within the threefold
range made by the Jansson et al. model were significantly
higher than the number of predictions made by all of
the other models (P < 0.01) except the Rodgers et al. model.
The Poulin & Theil model had the lowest percentage of
predictions within the threefold range with 55.8%.
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For basic compounds, the Poulin & Theil model per-
formed significantly (P < 0.05) better than any other model
with 80.4% of compounds within the threefold range, with
the Berezhkovskiy model having the lowest percentage of
predictions within this range (32.2%; Table 3). Jansson et al.
produced the most accurate predictions for both neutral

compounds (83.8% within threefold; results not significant)
and zwitterionic compounds (80.9%; P < 0.01).

Predictions for the Arundel model showed the highest
consistency across all drug classes, with predictions differing
by just 9.7% (from 65.3% for basic compounds to 75.0%
for neutrals). In contrast, predictions by the Berezhkovskiy
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Figure 1 Relationship between predicted and experimentally derived Kp values for 81 compounds using the Arundel model (a), the Berezhkovskiy
model (b), the Jansson et al. model (c), the Poulin et al. model (d), the Rodgers et al. model (e) and the Poulin & Theil model (f). Straight lines indicate line
of unity and threefold above and below; diamonds indicate acids; squares indicate bases; triangles indicate neutrals; and crosses indicate zwitterions.
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model differed by nearly 40% across classes (32.2% for basic
compounds to 71.7% for acidic compounds).

Assessment of prediction accuracy by tissue

Large differences in accuracy of prediction between different
tissues were observed. Across all models, based on accuracy
of prediction, the tissues fall into the following order: skin
(an average across all models of 75.2% of predictions
within threefold of experimental values), heart (72.7%),
muscle (69.8%), gut (65.1%), lung (61.7%), liver (61.2%),
brain (60.4%), spleen (58.3%), kidney (58%), bone (52.4%)

and adipose (51.3%). The highest percentage of predictions
within 3-fold of experimental values was generated by the
Poulin & Theil model in heart tissue, with 97.1% within
3-fold, an afe of 0.80 and an rmse of 0.21. The lowest percent-
age of predictions within threefold was made by the Poulin &
Theil model in spleen tissue, with just 20.0%. A high afe of
4.45 indicated that this model consistently over-predicted
Kps for this tissue. Poor prediction accuracy was observed for
spleen Kp regardless of the model used (on average 58%
within threefold), with aafe values ranging from 1.78 to 4.45
for the Rodgers et al. and Poulin & Theil models, respectively.
The Rodgers et al. model performed the best for this tissue,

Table 1 Comparative and statistical assessment of the six models used to predict Kp using a dataset of 81 compounds (21 acids, 46 bases, 5 neutrals,
9 zwitterions) in 11 rat tissues

Model
% <
threefold

% three to
fivefold

% >
fivefold afe aafe rmse ccc n

Mean
pred : obs
ratio SD

Arundel 68.5 13.6 17.8 1.15 2.62 0.58 0.51 623 2.97 12.94
Berezhkovskiy 46.1 18.5 35.8 0.45 4.20 0.79 0.16 645 2.13 11.68
Jansson et al. 68.7 14.8 16.7 1.08 2.58 0.57 0.24 623 3.19 12.72
Poulin et al. 50.5 17.8 31.8 0.54 3.78 0.73 0.16 645 1.76 4.33
Rodgers et al. 77.3 12.1 10.6 1.01 2.13 0.44 0.42 586 1.76 3.11
Poulin & Theil 70.5 14.5 15.5 0.85 2.41 0.53 0.72 543 1.59 2.33

aafe, absolute average fold-error; afe, average fold-error; ccc, correlation concordance coefficient; obs, observed; pred, predicted; rmse, root mean
squared error; SD, standard deviation.

Table 2 Comparative and statistical assessment of the six models used to predict Kp in rat using 21 acidic compounds

Model
% <
threefold

% three to
fivefold

% >
fivefold afe aafe rmse ccc n

Mean
pred : obs
ratio SD

Arundel 75.0 14.5 10.5 1.03 2.22 0.44 0.51 153 1.84 3.01
Berezhkovskiy 71.7 14.5 13.9 0.99 2.30 0.49 0.41 166 2.40 6.50
Jansson et al. 90.2 5.9 4.6 1.26 1.70 0.33 0.79 153 1.86 3.47
Poulin et al. 74.1 12.7 13.3 1.47 2.35 0.51 0.34 166 3.39 7.55
Rodgers et al. 85.0 10.2 6.0 1.15 1.91 0.39 0.53 167 1.77 3.14
Poulin & Theil 55.8 17.8 28.7 0.80 3.34 0.66 0.20 129 3.57 19.33

aafe, absolute average fold-error; afe, average fold-error; ccc, correlation concordance coefficient; obs, observed; pred, predicted; rmse, root mean
squared error; SD, standard deviation.

Table 3 Comparative and statistical assessment of the six models used to predict Kp in rat using 46 basic compounds

Model
% <
threefold

% three to
fivefold

% >
fivefold afe aafe rmse ccc n

Mean
pred : obs
ratio SD

Arundel 65.3 13.1 21.7 1.22 2.78 0.60 0.37 360 3.73 16.83
Berezhkovskiy 32.2 19.2 48.6 0.31 5.69 0.91 0.13 360 1.61 5.53
Jansson et al. 56.1 20.7 23.2 1.01 3.19 0.66 0.11 353 4.27 16.69
Poulin et al. 41.1 17.3 41.6 0.39 4.77 0.84 0.12 353 1.35 2.67
Rodgers et al. 75.7 13.6 10.7 1.06 2.18 0.47 0.30 337 2.05 3.96
Poulin & Theil 80.1 9.6 10.3 0.83 2.08 0.49 0.56 301 1.45 2.49

aafe, absolute average fold-error; afe, average fold-error; ccc, correlation concordance coefficient; obs, observed; pred, predicted; rmse, root mean
squared error; SD, standard deviation.
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with 81.5% of predictions within the threefold range,
followed by the Poulin et al. model with 68.2%.

The difference between models is particularly evident for
kidney tissue, where the difference between the highest and
lowest percentage of predictions within threefold was almost
50% (Berezhkovskiy 26.1% vs Arundel 76.8%). The fold error
for this tissue was also highly variable, with aafe values
ranging from 1.86 (Poulin & Theil) to 6.08 (Poulin et al.). A
similar difference was seen for liver tissue, with a difference of
over 40% between the most accurate model (72.6%; Rodgers
et al.) and the least accurate model (31.3%; Berezhkovskiy).
In contrast, skin was predicted with high accuracy by all
models, ranging from 64.9% (Poulin et al. model) to 83.3%
(Rodgers et al. model). This high accuracy was reflected in
the aafe values, ranging from 1.97 (Poulin & Theil) to 2.53
(Poulin et al.).

Predictions for lung tissue were particularly inaccurate,
with the exception of the Poulin & Theil model (aafe values
ranging from 2.27 in the Rodgers et al. model to 6.61 in the
Berezhkovskiy model). All models under-predicted Kp values

for this tissue, except the Poulin & Theil model (afe of 1.13),
which was the most accurate and precise model for this tissue
type, with 83.3% of predictions in the threefold range, and an
rmse of 0.34.

The Berezhkovskiy model under-predicted Kp values for
all tissues except adipose and brain (Figure 2), which it over-
predicted with afe values of 2.83 and 1.38, respectively. It was
the only model to show such a strong bias towards either over-
or under-prediction. The Rodgers et al. model over-predicted
Kp for five out of the eleven tissues studied (adipose, brain,
heart, muscle and skin; Figure 3) with afe values ranging
from 1.19 for adipose to 1.96 for skin. For the five tissues for
which this model under-predicted Kp, the afe values ranged
from 0.55 for kidney to 0.98 for spleen (for the remaining
tissue, bone, the afe value is 1.0, indicating that this tissue
did not show a bias towards either under-prediction or
over-prediction).

The Rodgers et al. model was consistently the most accu-
rate across all tissues, with the percentage of predictions
within threefold differing by 26.6% across all tissues (from
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Figure 2 Boxplot of log predicted/observed Kp values for each tissue as predicted by the Berezhkovskiy model.[10] The boxes indicate the standard
deviation; the whiskers represent the range between the 10th and 90th percentile; the horizontal black line represents the median value; and outliers are
represented by black circles.
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66.1% in brain to 92.7% in heart). The Poulin & Theil model
was the least consistent, with a range of 77.1% (20.0% in
spleen to 97.1% in heart).

Outliers in Kp prediction

Large under predictions (by up to a factor of 100) were seen
for acebutolol-R and acebutolol-S in gut tissue in all models,
and betaxolol-R and betaxolol-S were under-predicted in
lung tissue by all models except the Poulin & Theil model.
Propranolol-R and propranolol-S were poorly predicted in
brain tissue (under-predicted by up to a factor of 16) by all
except the Arundel and Poulin & Theil models. The single
largest prediction error was shown by the Berezhkovskiy
model for betaxolol-R in the lung, which was under-
predicted by a factor of 224.

Vss predictions

Of the four models for which Vss predictions were made, the
Poulin & Theil model was the most accurate, with 87.0%
of predictions within threefold of experimental values

(Figure 4; Table 4). However, there was no significant differ-
ence in the accuracy compared with the Rodgers et al. model
that resulted in slightly less number of studies within that
range (80.3% within threefold, P = 0.1). The Berezhkovskiy
and Poulin et al. models were the least accurate, both with
63.0% of predictions within the threefold range, and this
result was significant (P < 0.05). When experimental Kp
values were used to predict Vss, 88.9% of predictions were
within threefold of experimental values, which was signifi-
cantly more accurate than Rodgers et al., Berezhkovskiy, and
Poulin et al. models (P < 0.5); no statistically significant dif-
ference was observed when compared with the performance
of the Poulin & Theil model (P = 0.5).

Discussion

Kp predictions

The current study assessed both empirical and mechanistic
models for their ability to predict partition coefficients of 81
drugs across a range of tissues. The comparisons performed
in this study showed that the Rodgers et al. model is the
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significantly the most accurate as a general partition coeffi-
cient predictor across all drug classes and all tissues, with
more than 77% of the predictions within threefold of experi-
mentally derived values. This model was consistently shown
to be the most accurate across all tissue types. The Berezhk-
ovskiy and Poulin et al. models were significantly the least
accurate, with > 30% of predictions outside fivefold of
experimental values.

Assessing the results for the individual drug classes indi-
cated that the Poulin et al. model performed particularly
poorly for basic compounds, with less than 42% of predic-
tions within the threefold range. Poulin et al. themselves
acknowledged this deficiency of their model, and it was
for this reason that the Rodgers et al. model concentrated
specifically on improving the accuracy of predictions for
moderate-to-strong bases in response to the Poulin et al.
papers. Rodgers et al. incorporated the unique binding prop-
erties of these types of bases into their model, and therefore

it is unsurprising that this model performs much better in the
prediction of Kp values for compounds of this type.Although
the Poulin et al. and Rodgers et al. models are both mechanis-
tic in nature, the Rodgers et al. model incorporates a greater
number of potential interactions with tissue components
which may explain the improvement in accuracy of predic-
tion exhibited by this model. The Rodgers et al. model takes
into account not only the volumes of neutral lipids and phos-
pholipids in the tissue, but also the interactions with acidic
phospholipids and also the potential specific binding of a
compound to extracellular proteins such as albumin and
lipoproteins. For moderate-to-strong bases, the incorpora-
tion of drug dissolution in the tissue water and the partition-
ing of unbound, un-ionised drug into neutral lipids and
neutral phospholipids also lead to an improvement in accu-
racy when compared with earlier models that neglect to
include these important and influential features.

The Poulin et al. and Berezhkovskiy models were designed
primarily to predict Kp for acids and weak bases, and there-
fore they show a low degree of accuracy for the basic com-
pounds in this dataset, as 37 of the 46 bases in the dataset
are classed as strong (i.e. pKa � 7). As expected, these two
models show much better accuracy of prediction for the
acidic compounds in this dataset, with over 71% of predic-
tions within the threefold range. The dataset itself is biased
towards basic compounds, containing 46 bases compared
with only 21 acids, and so this may have skewed the results in
favour of certain models. However, by looking at the results
for the different drug classes separately alongside the overall
results, it is possible to remove the influence of this bias and
further understand where the strength of each model lies.

A threefold range was chosen to measure the accuracy of
the predictions made by each model as it has been shown
previously that experimental values can differ due to inter-
laboratory and inter-animal variability.[15] Therefore, to
provide a definitive validation of the prediction ability of a
model, experimental data for all compounds would need to
be gathered from the same source. Using only data available
in the literature, this is an impossible task for such a large
dataset. The experimental values collated from the literature
for this study come from a large variety of different sources
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Vss (L/kg) values for 81 compounds using the Berezhkovskiy model (dia-
monds), the Poulin et al. model (squares), the Rodgers et al. model
(crosses), the Poulin & Theil model (triangles), and experimental Kps
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Table 4 Comparative and statistical assessment of the four models used to predict Vss in rat using 81 compounds

Model % <3-fold % 3–5-fold % >5-fold afe aafe rmse ccc n
mean
pred : obs ratio SD

Berezhkovskiy 63.0 11.1 25.9 0.55 2.87 0.60 0.26 81 1.03 1.27
Poulin et al. 63.0 11.1 25.9 0.58 2.85 0.57 0.26 81 1.04 1.04
Rodgers et al. 80.3 5.3 14.5 0.92 2.04 0.42 0.45 76 1.43 1.60
Poulin & Theil 87.0 9.1 3.9 0.78 1.84 0.35 0.45 77 1.02 0.80
from experimental Kps 88.9 4.9 6.2 0.74 1.69 0.34 0.53 81 0.91 0.59

aafe, absolute average fold-error; afe, average fold-error; ccc, correlation concordance coefficient; obs, observed; pred, predicted; rmse, root mean
squared error; SD, standard deviation.
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and therefore are likely to display a degree of variability that is
impossible to quantify. Use of the threefold factor as a
measure of accuracy allowed the effect of this variability to be
accounted for to some extent. Wherever possible, the in-vivo
Kp data used in this study was obtained under steady-state or
pseudo-equilibrium conditions; however, for some studies
no data were available to confirm this.

Another degree of uncertainty is introduced by considering
the variability of the input parameters used by the models
in this study. The sensitivity of a particular model to one
of these input parameters can be investigated by varying
that parameter and examining the effect upon the results.
For example, the logP values used here were experimentally
determined wherever possible (65 out of the 81 compounds);
however, when only predicted logP values were used[9,12,17]

(details not shown here), the number of Kp predictions within
threefold made by the Rodgers et al. model was reduced to
71%, a significant decrease in accuracy of almost 7% (P <
0.01). Furthermore, increasing all logP values by just 20%
caused a significant decrease in accuracy of the Rodgers et al.
model of almost 14% (P < 0.01). Repeating the same proce-
dure with pKa values showed a significant reduction in accu-
racy of the Rodgers et al. model of almost 9% (P < 0.05) when
the input parameter is varied by � 20%. This highlights the
need for caution when interpreting any results that rely on such
a large amount of experimental data from different sources.

Certain drugs in certain tissues were predicted poorly by
nearly all models, such as acebutolol in gut, bone and brain,
betaxolol in lung, and propranolol in brain. The reasons
for these poor predictions are likely to be complex and may
involve a variety of mechanisms, and some of these issues
have been highlighted previously and commented upon in
the literature. For example, Rodgers et al. also observed the
over-prediction of acebutolol in gut and discussed the possi-
bility that this may arise from analysing the gut along with its
contents when deriving the in-vivo Kp value. Processes such
as intestinal reabsorption and biliary secretion could be con-
tributing to an increase in concentration of compound in the
gut contents and therefore a true comparison cannot be made
between predicted results (gut tissue only) and experimental
results (gut tissue plus gut contents).[20] The authors also saw a
degree of under-prediction for certain compounds in lung,
which is also seen in this study. This could be attributed to the
possibility that basic, lipophilic compounds might be seques-
tered within lysosomes in the lung tissue.[21,22] It is also known
that other tissues, such as liver and kidney, are rich in lysos-
omes and yet the same ‘lysosomal trapping’ effect as seen in
lung is not observed. This goes to further show that the parti-
tioning of drug into these organelles is little understood, and
therefore it is not yet possible to incorporate this mechanism
into predictive models.

However, it is worth noting that all of the experimental Kps
for the three outliers, acebutolol, propranolol and betaxolol,

were taken from the same study.[20] Although the authors took
precautions to ensure that all Kp values were obtained under
steady-state conditions (including comparison of results
from 4-h and 8-h infusions and analysing all results in tripli-
cate), it is possible that some errors were made.

Another major limitation of all the models investigated
in this study is their lack of incorporation of active uptake
processes, which can greatly affect the tissue distribution
of certain compounds.[23] All the models assume that com-
pounds are distributed solely by passive diffusion leading to
perfusion-limited distribution and minimal contribution
from active uptake. Pravastatin is an example of a drug that
undergoes active uptake into both the liver and the kidney
via the organic anion transporters OATP1B1 and OATP3,
respectively.[24,25] If predicted Kp values for this compound are
compared to in-vivo Kp data reported for a minimal number
of tissues,[26] the Rodgers et al. model significantly under-
predicts Kp for kidney as the predicted value represents only
3.5% of the observed Kp (19.4). Use of empirical models
results in even more pronounced inaccuracy, as the predicted
Kp for this tissue represented only 0.5–2% of the observed
value using the Arundel and Jansson et al. models, respec-
tively. If, in contrast, Kp is predicted for a tissue not known to
actively take up pravastatin (e.g. lung), the models produce
more accurate results, with the Rodgers et al. model predict-
ing Kp within twofold of experimental values, and the
Jansson et al. model under-predicting Kp by less than three-
fold. These findings indicate the limitations of the current
models to accommodate active uptake processes and this,
consequently, has implications on the application of these
predictive tools for PBPK modelling of such compounds in
the drug development process. Considering the increasing
number of drugs found to be associated with active uptake, in
particular in the liver (e.g. statins, repaglinide),[27,28] refine-
ment of current predictive models and incorporation of the
permeability limited distribution is required.

Vss predictions

If a specific Kp value for a certain tissue was required in the
drug development process, it is likely that it would be deter-
mined experimentally rather than relying on a prediction
method such as the ones shown here. Therefore, the most
widespread use of Kp prediction is not in identifying indi-
vidual values but in using the Kp values of all the tissues
together to generate a prediction for the volume of distribu-
tion at steady state (Vss) of a compound. Therefore, this study
also investigated the accuracy of Vss predictions made using
the predicted Kp values from four of the models. The Poulin
& Theil model was shown to be the most accurate, with 87%
of predictions within threefold of experimental values. As
muscle tissue makes up more than 50% of the total tissue
volume in rat, accurate Kp predictions for this tissue would be
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expected to lead to accurate Vss predictions. As the Poulin &
Theil model does not predict muscle Kp, and instead uses
in-vivo muscle Kp as an input parameter, it is to be expected
that this model provides the most accurate Vss predictions.
Of the other three models that do predict muscle Kp, the
Rodgers et al. model performs better than the other models,
with over 83% of muscle Kp predictions within threefold
of experimental values. This explains to some extent why
the Rodgers et al. model also provides the most accurate Vss

predictions out of these three models, with over 80% within
the threefold range.

Previous studies looking at the prediction of human phar-
macokinetics have shown that 78%,[13] 79%[14] and 79%[16] of
Vss predictions made by the Rodgers et al. model are within
threefold of experimental values, although much smaller
datasets were used in these analyses (18, 26 and 47 com-
pounds, respectively). The authors of the Poulin & Theil
model showed 89.4% of predictions made by their model
were within threefold of experimental values for a dataset that
consisted solely of basic compounds. Consequently, these
results from the literature are comparable with the results
from this study, despite this study focusing solely on rat Vss

and the other studies on human values. However, for the
other two models investigated here this was not the case. The
recent Jones et al.[13] study found that for the Poulin et al.
model, 61% of predictions were within threefold of experi-
mental values, compared with 51% in this study. For the
Berezhkovskiy model, the difference is more pronounced,
with values of 72% and 46%, respectively. This can perhaps
be explained by the differences in the datasets used by the
two studies. In the Jones et al. study, 55% (n = 6) of the basic
compounds can be classified as strong bases (pKa � 7),
whereas in the dataset used here, almost 80% (n = 37) of
the basic compounds fit this criterion. As described above,
the Poulin et al. and Berezhkovskiy models have previously
been shown to perform poorly in the prediction of Kp for this
type of compound, and so are likely to produce better Vss pre-
dictions for the Jones et al. dataset, which contains a higher
proportion of weak basic compounds. The dataset used here
also covers a much wider range of physicochemical properties
than the Jones et al. study, with a 1.7-fold and 1.9-fold larger
range of pKa and logP values, respectively. Therefore, it is
unlikely that exactly comparable results would be produced
by the two studies.

Unexpectedly, the number of accurate Vss predictions made
using experimental Kps was not significantly larger than the
Poulin & Theil model, with just under 90% of predictions
within threefold of experimental values. This result is due, in
part, to a lack of experimental data for certain compounds.
For example, for morphine, experimental Kp values were only
available in gut, kidney and liver, and so the predicted Vss

value was 19-fold smaller than the experimental value. As
these three tissues only make up 10% of the rat tissue volume,
it is unsurprising that Vss predictions made from them are
highly inaccurate. Conversely, the Vss prediction for theophyl-
line, for which again only three experimental Kps were avail-
able, is within twofold of experimental Vss. Kps for this drug
are available in brain, muscle and lung, which make up 58% of
the rat tissue volume, and so more accurate Vss predictions are
possible. Caffeine has five experimental Kp values available
(adipose, bone, brain, heart, kidney; 14% of tissue volume),
and the Vss prediction is more than six times smaller than the
experimental value.

Conclusions

In conclusion, the Rodgers et al. model has been shown to be
the most accurate a-priori model for the prediction of both
Kp and Vss values in rat. However, the model does show
enough limitations to justify the further development and
improvement of this method to increase its reliability and
allow it to be used with more confidence during the drug
development process. The incorporation of elements such as
active transport systems and lysosomal trapping is required to
further enhance the accuracy of these models, although this
could potentially lead to the models becoming too complex
and too specific to be of general use.
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